Copied to
clipboard

G = C23.16S4order 192 = 26·3

3rd non-split extension by C23 of S4 acting via S4/A4=C2

non-abelian, soluble

Aliases: C23.16S4, SL2(𝔽3)⋊2D4, C222GL2(𝔽3), Q8⋊(C3⋊D4), Q8⋊Dic33C2, (C2×Q8).15D6, (C22×Q8)⋊2S3, C22.39(C2×S4), C2.9(A4⋊D4), (C2×GL2(𝔽3))⋊5C2, C2.5(C2×GL2(𝔽3)), C2.7(Q8.D6), (C22×SL2(𝔽3))⋊4C2, (C2×SL2(𝔽3)).15C22, SmallGroup(192,980)

Series: Derived Chief Lower central Upper central

C1C2Q8C2×SL2(𝔽3) — C23.16S4
C1C2Q8SL2(𝔽3)C2×SL2(𝔽3)C2×GL2(𝔽3) — C23.16S4
SL2(𝔽3)C2×SL2(𝔽3) — C23.16S4
C1C22C23

Generators and relations for C23.16S4
 G = < a,b,c,d,e,f,g | a2=b2=c2=f3=g2=1, d2=e2=c, gag=ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, bg=gb, ede-1=cd=dc, geg=ce=ec, cf=fc, cg=gc, fdf-1=cde, gdg=de, fef-1=d, gfg=f-1 >

Subgroups: 429 in 95 conjugacy classes, 17 normal (15 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, S3, C6, C8, C2×C4, D4, Q8, Q8, C23, C23, Dic3, D6, C2×C6, C22⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C2×Q8, SL2(𝔽3), C2×Dic3, C3⋊D4, C22×S3, C22×C6, C22⋊C8, Q8⋊C4, C4⋊D4, C2×SD16, C22×Q8, GL2(𝔽3), C2×SL2(𝔽3), C2×SL2(𝔽3), C2×C3⋊D4, Q8⋊D4, Q8⋊Dic3, C2×GL2(𝔽3), C22×SL2(𝔽3), C23.16S4
Quotients: C1, C2, C22, S3, D4, D6, C3⋊D4, S4, GL2(𝔽3), C2×S4, C2×GL2(𝔽3), Q8.D6, A4⋊D4, C23.16S4

Character table of C23.16S4

 class 12A2B2C2D2E2F34A4B4C4D6A6B6C6D6E6F6G8A8B8C8D
 size 111122248661224888888812121212
ρ111111111111111111111111    trivial
ρ21111-1-1-1111-11-1-11-1-111-1-111    linear of order 2
ρ31111-1-11111-1-1-1-11-1-11111-1-1    linear of order 2
ρ4111111-11111-11111111-1-1-1-1    linear of order 2
ρ52222220-12220-1-1-1-1-1-1-10000    orthogonal lifted from S3
ρ622-2-200022-20000200-2-20000    orthogonal lifted from D4
ρ72222-2-20-122-2011-111-1-10000    orthogonal lifted from D6
ρ822-2-2000-12-200-3-3-1--3--3110000    complex lifted from C3⋊D4
ρ922-2-2000-12-200--3--3-1-3-3110000    complex lifted from C3⋊D4
ρ102-22-2-220-100001-11-11-11--2-2-2--2    complex lifted from GL2(𝔽3)
ρ112-22-22-20-10000-1111-1-11--2-2--2-2    complex lifted from GL2(𝔽3)
ρ122-22-2-220-100001-11-11-11-2--2--2-2    complex lifted from GL2(𝔽3)
ρ132-22-22-20-10000-1111-1-11-2--2-2--2    complex lifted from GL2(𝔽3)
ρ143333-3-3-10-1-111000000011-1-1    orthogonal lifted from C2×S4
ρ1533333310-1-1-110000000-1-1-1-1    orthogonal lifted from S4
ρ163333-3-310-1-11-10000000-1-111    orthogonal lifted from C2×S4
ρ17333333-10-1-1-1-100000001111    orthogonal lifted from S4
ρ184-44-4-44010000-11-11-11-10000    orthogonal lifted from GL2(𝔽3)
ρ194-44-44-40100001-1-1-111-10000    orthogonal lifted from GL2(𝔽3)
ρ204-4-44000-20000002002-20000    symplectic lifted from Q8.D6, Schur index 2
ρ214-4-4400010000--3-3-1--3-3-110000    complex lifted from Q8.D6
ρ224-4-4400010000-3--3-1-3--3-110000    complex lifted from Q8.D6
ρ2366-6-60000-220000000000000    orthogonal lifted from A4⋊D4

Smallest permutation representation of C23.16S4
On 32 points
Generators in S32
(1 22)(2 23)(3 24)(4 21)(5 19)(6 20)(7 17)(8 18)(9 25)(10 26)(11 27)(12 28)(13 29)(14 30)(15 31)(16 32)
(1 14)(2 15)(3 16)(4 13)(5 27)(6 28)(7 25)(8 26)(9 17)(10 18)(11 19)(12 20)(21 29)(22 30)(23 31)(24 32)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 10 3 12)(2 9 4 11)(5 31 7 29)(6 30 8 32)(13 19 15 17)(14 18 16 20)(21 27 23 25)(22 26 24 28)
(2 10 11)(4 12 9)(5 31 8)(6 7 29)(13 20 17)(15 18 19)(21 28 25)(23 26 27)
(1 3)(2 11)(4 9)(5 23)(6 28)(7 21)(8 26)(13 17)(14 16)(15 19)(22 32)(24 30)(25 29)(27 31)

G:=sub<Sym(32)| (1,22)(2,23)(3,24)(4,21)(5,19)(6,20)(7,17)(8,18)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32), (1,14)(2,15)(3,16)(4,13)(5,27)(6,28)(7,25)(8,26)(9,17)(10,18)(11,19)(12,20)(21,29)(22,30)(23,31)(24,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,10,3,12)(2,9,4,11)(5,31,7,29)(6,30,8,32)(13,19,15,17)(14,18,16,20)(21,27,23,25)(22,26,24,28), (2,10,11)(4,12,9)(5,31,8)(6,7,29)(13,20,17)(15,18,19)(21,28,25)(23,26,27), (1,3)(2,11)(4,9)(5,23)(6,28)(7,21)(8,26)(13,17)(14,16)(15,19)(22,32)(24,30)(25,29)(27,31)>;

G:=Group( (1,22)(2,23)(3,24)(4,21)(5,19)(6,20)(7,17)(8,18)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32), (1,14)(2,15)(3,16)(4,13)(5,27)(6,28)(7,25)(8,26)(9,17)(10,18)(11,19)(12,20)(21,29)(22,30)(23,31)(24,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,10,3,12)(2,9,4,11)(5,31,7,29)(6,30,8,32)(13,19,15,17)(14,18,16,20)(21,27,23,25)(22,26,24,28), (2,10,11)(4,12,9)(5,31,8)(6,7,29)(13,20,17)(15,18,19)(21,28,25)(23,26,27), (1,3)(2,11)(4,9)(5,23)(6,28)(7,21)(8,26)(13,17)(14,16)(15,19)(22,32)(24,30)(25,29)(27,31) );

G=PermutationGroup([[(1,22),(2,23),(3,24),(4,21),(5,19),(6,20),(7,17),(8,18),(9,25),(10,26),(11,27),(12,28),(13,29),(14,30),(15,31),(16,32)], [(1,14),(2,15),(3,16),(4,13),(5,27),(6,28),(7,25),(8,26),(9,17),(10,18),(11,19),(12,20),(21,29),(22,30),(23,31),(24,32)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,10,3,12),(2,9,4,11),(5,31,7,29),(6,30,8,32),(13,19,15,17),(14,18,16,20),(21,27,23,25),(22,26,24,28)], [(2,10,11),(4,12,9),(5,31,8),(6,7,29),(13,20,17),(15,18,19),(21,28,25),(23,26,27)], [(1,3),(2,11),(4,9),(5,23),(6,28),(7,21),(8,26),(13,17),(14,16),(15,19),(22,32),(24,30),(25,29),(27,31)]])

Matrix representation of C23.16S4 in GL4(𝔽73) generated by

72400
0100
00720
00072
,
72000
07200
0010
0001
,
1000
0100
00720
00072
,
1000
0100
003252
002141
,
1000
0100
005333
005220
,
1000
0100
002041
002052
,
1000
377200
00720
0011
G:=sub<GL(4,GF(73))| [72,0,0,0,4,1,0,0,0,0,72,0,0,0,0,72],[72,0,0,0,0,72,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,72,0,0,0,0,72],[1,0,0,0,0,1,0,0,0,0,32,21,0,0,52,41],[1,0,0,0,0,1,0,0,0,0,53,52,0,0,33,20],[1,0,0,0,0,1,0,0,0,0,20,20,0,0,41,52],[1,37,0,0,0,72,0,0,0,0,72,1,0,0,0,1] >;

C23.16S4 in GAP, Magma, Sage, TeX

C_2^3._{16}S_4
% in TeX

G:=Group("C2^3.16S4");
// GroupNames label

G:=SmallGroup(192,980);
// by ID

G=gap.SmallGroup(192,980);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,2,-2,85,451,1684,655,172,1013,404,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^3=g^2=1,d^2=e^2=c,g*a*g=a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,e*d*e^-1=c*d=d*c,g*e*g=c*e=e*c,c*f=f*c,c*g=g*c,f*d*f^-1=c*d*e,g*d*g=d*e,f*e*f^-1=d,g*f*g=f^-1>;
// generators/relations

Export

Character table of C23.16S4 in TeX

׿
×
𝔽